Indelicato, P. & Karpov, A. Sizing up atoms. Nature 498, 40–41 (2013).
Nazarewicz, W. The limits of nuclear mass and charge. Nat. Phys. 14, 537–541 (2018).
Erler, J. et al. The limits of the nuclear landscape. Nature 486, 509–512 (2012).
Tsunoda, N. et al. Exotic neutron-rich medium-mass nuclei with realistic nuclear forces. Phys. Rev. C 95, 021304(R) (2017).
Goeppert Mayer, M. On closed shells in nuclei. II. Phys. Rev. 75, 1969 (1949).
Haxel, O., Jensen, J. H. D. & Suess, H. E. On the “magic numbers” in nuclear structure. Phys. Rev. 75, 1766 (1949).
Rainwater, J. Nuclear energy level argument for a spheroidal nuclear model. Phys. Rev. 79, 432 (1950).
Bohr, A. & Mottelson, B. R. Nuclear Structure Vol. II (Benjamin, 1975).
Casten, R. F. Nuclear Structure From A Simple Perspective (Oxford Univ. Press, 2000).
Thibault, C. et al. Direct measurement of the masses of 11Li and 26–32Na with an on-line mass spectrometer. Phys. Rev. C 12, 644–657 (1975).
Guillemaud-Mueller, D. et al. β-Decay schemes of very neutron-rich sodium isotopes and their descendants. Nucl. Phys. A 426, 37–76 (1984).
Warburton, E. K., Becker, J. A. & Brown, B. A. Mass systematics for A = 29–44 nuclei: the deformed A ~ 32 region. Phys. Rev. C 41, 1147 (1990).
Caurier, E., Martínez-Pinedo, G., Nowacki, F., Poves, A. & Zuker, A. P. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 77, 427–488 (2005).
Heyde, K. & Wood, J. L. Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83, 1467 (2011).
Tanihata, I. et al. Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676–2679 (1985).
Hansen, P. G. & Jonson, B. The neutron halo of extremely neutron-rich nuclei. Europhys. Lett. 4, 409 (1987).
Gade, A. & Glasmacher, T. In-beam nuclear spectroscopy of bound states with fast exotic ion beams. Prog. Part. Nucl. Phys. 60, 161–224 (2008).
Nakamura, T., Sakurai, T. & Watanabe, H. Exotic nuclei explored at in-flight separators. Prog. Part. Nucl. Phys. 97, 53–122 (2017).
Takayanagi, K. Effective interaction in non-degenerate model space. Nucl. Phys. A 852, 61–81 (2011).
Takayanagi, K. Effective Hamiltonian in the extended Krenciglowa-Kuo method. Nucl. Phys. A 864, 91–112 (2011).
Tsunoda, N., Takayanagi, K., Hjorth-Jensen, M. & Otsuka, T. Multi-shell effective interactions. Phys. Rev. C 89, 024313 (2014).
Machleidt, R. & Entem, D. R. Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1 (2011).
Otsuka, T., Suzuki, T., Holt, J. A., Schwenk, A. & Akaishi, Y. Three-body forces and the limit of oxygen isotopes. Phys. Rev. Lett. 105, 032501 (2010).
Fujita, J. & Miyazawa, H. Pion theory of three-body forces. Prog. Theor. Phys. 17, 360 (1957).
Stroberg, S. R. et al. Nucleus-dependent valence-space approach to nuclear structure. Phys. Rev. Lett. 118, 032502 (2017).
Simonis, J., Stroberg, S. R., Hebeler, K., Holt, J. D. & Schwenk, A. Saturation with chiral interactions and consequences for finite nuclei. Phys. Rev. C 96, 014303 (2017).
Otsuka, T., Gade, A., Sorlin, O., Suzuki, T. & Utsuno, Y. Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 92, 015002 (2020).
Loelius, C. et al. Enhanced electric dipole strength for the weakly bound states in 27Ne. Phys. Rev. Lett. 121, 262501 (2018).
Fernández-Domínguez, B. et al. Re-examining the transition into the N = 20 island of inversion: structure of 30Mg. Phys. Lett. B 779, 124 (2018).
Xu, Z. Y. et al. Nuclear moments of the low-lying isomeric 1+ state of 34Al: Investigation on the neutron 1p1h excitation across N = 20 in the island of inversion. Phys. Lett. B 782, 619 (2018).
Murray, I. et al. Spectroscopy of strongly deformed 32Ne by proton knockout reactions. Phys. Rev. C 99, 011302(R) (2019).
Nishibata, H. et al. Structure of 31Mg: shape coexistence revealed by β-γ spectroscopy with spin-polarized 31Na. Phys. Rev. C 99, 024322 (2019).
Shimizu, N., Mizusaki, T., Utsuno, Y. & Tsunoda, Y. Thick-restart block Lanczos method for large-scale shell-model calculations. Comput. Phys. Commun. 244, 372–384 (2019).
Otsuka, T., Honma, M., Mizusaki, T., Shimizu, N. & Utsuno, Y. Monte Carlo shell model for atomic nuclei. Prog. Part. Nucl. Phys. 47, 319–400 (2001).
Shimizu, N. et al. New-generation Monte Carlo shell model for the K computer era. Prog. Theor. Exp. Phys. 2012, 01A205 (2012).
Marsh, B. A. et al. Characterization of the shape-starggering effect in mercury nuclei. Nat. Phys. 14, 1163–1167 (2018).
Ichikawa, Y. et al. Interplay between nuclear shell evolution and shape deformation revealed by the magnetic moment of 75Cu. Nat. Phys. 15, 321–325 (2019).
Taniuchi, R. et al. 78Ni revealed as a doubly magic stronghold against nuclear deformation. Nature 569, 53–58 (2019).
Ahn, D. S. et al. Location of the neutron dripline at fluorine and neon. Phys. Rev. Lett. 123, 212501 (2019).
Koura, H. et al. Nuclidic mass formula on a spherical basis with an improved even-odd term. Prog. Theor. Phys. 113, 305–325 (2005).
Otsuka, T., Suzuki, T., Fujimoto, R., Grawe, H. & Akaishi, Y. Evolution of the nuclear shells due to the tensor force. Phys. Rev. Lett. 95, 232502 (2005).
Fauerbach, M. et al. New search for 26O. Phys. Rev. C 53, 647–651 (1996).
Sakurai, H. et al. Evidence for particle stability of 31F and particle instability of 25N and 28O. Phys. Lett. B 448, 180–184 (1999).
Dobaczewski, J., Michel, N., Nazarewicz, W., Płoszajczak, M. & Rotureau, J. Shell structure of exotic nuclei. Prog. Part. Nucl. Phys. 59, 432–445 (2007).
Caurier, E., Nowacki, F. & Poves, A. Merging of the islands of inversion at N = 20 and N = 28. Phys. Rev. C 90, 014302 (2014).
Jahn, H. A. & Teller, E. Stability of polyatomic molecules in degenerate electronic states. I—Orbital degeneracy. Proc. R. Soc. Lond. A 161, 220 (1937).
Crawford, H. L. et al. First spectroscopy of the near drip-line nucleus 40Mg. Phys. Rev. Lett. 122, 052501 (2019).
Nakamura, T. et al. Deformation-driven p-wave halos at the drip line: 31Ne. Phys. Rev. Lett. 112, 142501 (2014).
Bohr, A. & Mottelson, B. R. Nuclear Structure Vol. I (Benjamin, 1969).
Otsuka, T., Tsunoda, Y., Abe, T., Shimizu, N. & Van Duppen, P. Underlying structure of collective bands and self-organization in quantum systems. Phys. Rev. Lett. 123, 222502 (2019).
Hjorth-Jensen, M., Kuo, T. T. S. & Osnes, E. Realistic effective interactions for nuclear systems. Phys. Rep. 261, 125–270 (1995).
Krenciglowa, E. M. & Kuo, T. T. S. Convergence of effective Hamiltonian expansion and partial summations of folded diagrams. Nucl. Phys. A 235, 171–189 (1974).
Entem, D. R. & Machleidt, R. Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001 (2003).
Bogner, S., Kuo, T. T. S., Coraggio, L., Covello, A. & Itaco, N. Low momentum nucleon-nucleon potential and shell model effective interactions. Phys. Rev. C 65, 051301 (2002).
Nogga, A., Bogner, S. K. & Schwenk, A. Low-momentum interaction in few-nucleon systems. Phys. Rev. C 70, 061002 (2004).
Carlson, J. et al. Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys. 87, 1067 (2015).
Pastore, S. et al. Quantum Monte Carlo calculations of weak transitions in A = 6–10 nuclei. Phys. Rev. C 97, 022501 (2018).
Ekström, A., Hagen, G., Morris, T. D., Papenbrock, T. & Schwartz, P. D. Δ isobars and nuclear saturation. Phys. Rev. C 97, 024332 (2018).
Honma, M., Otsuka, T., Brown, B. A. & Mizusaki, T. Effective interaction for pf-shell nuclei. Phys. Rev. C 65, 061301 (2002).
Notani, M. et al. New neutron-rich isotopes, 34Ne, 37Na and 43Si, produced by fragmentation of a 64 A MeV 48Ca beam. Phys. Lett. B 542, 49–54 (2002).
Baumann, T. et al. Discovery of 40Mg and 42Al suggests neutron drip-line slant towards heavier isotopes. Nature 449, 1022–1024 (2007).
Hagen, G. et al. Neutron and weak-charge distributions of the 48Ca nucleus, estimated uncertainties from truncations of employed method and model space. Nat. Phys. 12, 186–190 (2016).
Hergert, H., Binder, S., Calci, A., Langhammer, J. & Roth, R. Ab initio calculations of even oxygen isotopes with chiral two-plus-three-nucleon interactions. Phys. Rev. Lett. 110, 242501 (2013).
Hergert, H. et al. Ab initio multireference in-medium similarity renormalization group calculations of even calcium and nickel isotopes. Phys. Rev. C 90, 041302 (2014).
Stroberg, S. R., Hergert, H., Bogner, S. K. & Holt, J. D. Nonempirical interactions for the nuclear shell model: an update. Annu. Rev. Nucl. Part. Sci. 69, 307–362 (2019).
Simonis, J., Hebeler, K., Holt, J. D., Menendez, J. & Schwenk, A. Exploring sd-shell nuclei from two- and three-nucleon interactions with realistic saturation properties. Phys. Rev. C 93, 011302 (2016).
Morris, T. D. et al. Structure of the lightest tin isotopes. Phys. Rev. Lett. 120, 152503 (2018).
Holt, J. D., Menendez, J., Simonis, J. & Schwenk, A. Three-nucleon forces and spectroscopy of neutron-rich calcium isotopes. Phys. Rev. C 90, 024312 (2014).
Smirnova, N. A. et al. Effective interactions in the sd shell. Phys. Rev. C 100, 054329 (2019).
Dikmen, E. et al. Ab initio effective interactions for sd-shell valence nucleons. Phys. Rev. C 91, 064301 (2015).
Hergert, H., Bogner, S. K., Morris, T. D., Schwenk, A. & Tsukiyama, K. The in-medium similarity renormalization group: a novel ab initio method for nuclei. Phys. Rep. 621, 165–222 (2016).
Epelbaum, E., Hammer, H.-W. & Meißner, Ulf-G. Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773 (2009).
Bogner, S. K. et al. Nonperturbative shell-model interactions from the in-medium similarity renormalization group. Phys. Rev. Lett. 113, 142501 (2014).
Jansen, G. R., Engel, J., Hagen, G., Navratil, P. & Signoracci, A. Ab initio coupled-cluster effective interactions for the shell model: application to neutron-rich oxygen and carbon isotopes. Phys. Rev. Lett. 113, 142502 (2014).
Stroberg, S. R., Hergert, H., Holt, J. D., Bogner, S. K. & Schwenk. A. Ground and excited states of doubly open-shell nuclei from ab initio valence-space Hamiltonians. Phys. Rev. C 93, 051301(R) (2016).
Coraggio, L., Gargano, A. & Itaco, N. Double-step truncation procedure for large-scale shell-model calculations. Phys. Rev. C 93, 064328 (2016).
Hebeler, K., Bogner, S. K., Furnstahl, R. J., Nogga, A. & Schwenk, A. Improved nuclear matter calculations from chiral low-momentum interactions. Phys. Rev. C 83, 031301 (2011).
van Kolck, U. Few-nucleon forces from chiral Lagrangians. Phys. Rev. C 49, 2932 (1994).
Epelbaum, E. et al. Three-nucleon forces from chiral effective field theory. Phys. Rev. C 66, 064001 (2002).
Gazit, D., Quaglioni, S. & Navrátil, P. Three-nucleon low-energy constants from the consistency of interactions and currents in chiral effective field theory. Phys. Rev. Lett. 103, 102502 (2009); erratum 122, 029901 (2019).
Kohno, M. Nuclear and neutron matter G-matrix calculations with a chiral effective field theory potential including effects of three-nucleon interactions. Phys. Rev. C 88, 064005 (2013); erratum 96, 059903 (2017).
Bogner, S. K., Furnstahl, R. J. & Perry, R. J. Similarity renormalization group for nucleon-nucleon interactions. Phys. Rev. C 75, 061001(R) (2007).
Bogner, S. K., Furnstahl, R. J., Ramanan, S. & Schwenk, A. Low-momentum interactions with smooth cutoffs. Nucl. Phys. A 784, 79–103 (2007).
Wildenthal, B. H. & Chung, W. Collapse of the conventional shell-model ordering in the very-neutron-rich isotopes of Na and Mg. Phys. Rev. C 22, 2260 (1980).
Watt, A., Singhal, R. P., Storm, M. H. & Whitehead, R. R. A shell-model investigation of the binding energies of some exotic isotopes of sodium and magnesium. J. Phys. G 7, L145–L148 (1981).
Utsuno, Y., Otsuka, T., Mizusaki, T. & Honma, M. Varying shell gap and deformation in N ~ 20 unstable nuclei studied by the Monte Carlo shell model. Phys. Rev. C 60, 054315 (1999).
Motobayashi, T. et al. Large deformation of the very neutron-rich nucleus 32Mg from intermediate-energy Coulomb excitation. Phys. Lett. B 346, 9–14 (1995).
Gade, A. et al. Spectroscopy of 36Mg: interplay of normal and intruder configurations at the neutron-rich boundary of the “island of inversion”. Phys. Rev. Lett. 99, 072502 (2007).
Doornenbal, P. et al. Spectroscopy of 32Ne and the “island of inversion”. Phys. Rev. Lett. 103, 032501 (2009).
Nakamura, T. et al. Halo structure of the island of inversion nucleus 31Ne. Phys. Rev. Lett. 103, 262501 (2009).
Doornenbal, P. et al. In-beam γ-ray spectroscopy of 34,36,38Mg: merging the N = 20 and N = 28 shell quenching. Phys. Rev. Lett. 111, 212502 (2013).
Kobayashi, N. et al. Observation of a p-wave one-neutron halo configuration in 37Mg. Phys. Rev. Lett. 112, 242501 (2014).
Crawford, H. L. et al. Rotational band structure in 32Mg. Phys. Rev. C 93, 031303(R) (2016).
Doornenbal, P. et al. Low-Z shore of the “island of inversion” and the reduced neutron magicity toward 28O. Phys. Rev. C 95, 041301(R) (2017).
"impact" - Google News
November 04, 2020 at 11:08PM
https://ift.tt/2I0xPAS
The impact of nuclear shape on the emergence of the neutron dripline - Nature.com
"impact" - Google News
https://ift.tt/2RIFll8
https://ift.tt/3fk35XJ
Bagikan Berita Ini
0 Response to "The impact of nuclear shape on the emergence of the neutron dripline - Nature.com"
Post a Comment