Search

Impact of ionizing radiation on superconducting qubit coherence - Nature.com

komoros.blogspot.com
  • 1.

    DiVincenzo, D. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    MATH  Google Scholar 

  • 2.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019).

    ADS  CAS  Google Scholar 

  • 4.

    Lutchyn, R., Glazman, L. & Larkin, A. Kinetics of the superconducting charge qubit in the presence of a quasiparticle. Phys. Rev. B 74, 064515 (2006).

    ADS  Google Scholar 

  • 5.

    Martinis, J. M., Ansmann, M. & Aumentado, J. Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations. Phys. Rev. Lett. 103, 097002 (2009).

    ADS  Google Scholar 

  • 6.

    Jin, X. et al. Thermal and residual excited-state population in a 3D transmon qubit. Phys. Rev. Lett. 114, 240501 (2015).

    ADS  CAS  Google Scholar 

  • 7.

    Serniak, K. et al. Hot nonequilibrium quasiparticles in transmon qubits. Phys. Rev. Lett. 121, 157701 (2018).

    ADS  CAS  Google Scholar 

  • 8.

    Aumentado, J., Keller, M. W., Martinis, J. M. & Devoret, M. H. Nonequilibrium quasiparticles and 2e periodicity in single-Cooper-pair transistors. Phys. Rev. Lett. 92, 066802 (2004).

    ADS  CAS  Google Scholar 

  • 9.

    Taupin, M., Khaymovich, I., Meschke, M., Mel’nikov, A. & Pekola, J. Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors. Nat. Commun. 7, 10977 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Serniak, K. et al. Direct dispersive monitoring of charge parity in offset-charge-sensitive transmons. Phys. Rev. Appl. 12, 014052 (2019).

    ADS  CAS  Google Scholar 

  • 11.

    Córcoles, A. D. et al. Protecting superconducting qubits from radiation. Appl. Phys. Lett. 99, 181906 (2011).

    ADS  Google Scholar 

  • 12.

    Barends, R. et al. Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits. Appl. Phys. Lett. 99, 113507 (2011).

    ADS  Google Scholar 

  • 13.

    Bespalov, A., Houzet, M., Meyer, J. S. & Nazarov, Y. V. Theoretical model to explain excess of quasiparticles in superconductors. Phys. Rev. Lett. 117, 117002 (2016).

    ADS  Google Scholar 

  • 14.

    Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    ADS  CAS  Google Scholar 

  • 15.

    Oliver, W. D. & Welander, P. B. Materials in superconducting quantum bits. MRS Bull. 38, 816–825 (2013).

    CAS  Google Scholar 

  • 16.

    Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).

    Google Scholar 

  • 17.

    Gottesman, D. Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998).

    ADS  CAS  Google Scholar 

  • 18.

    Grünhaupt, L. et al. Loss mechanisms and quasiparticle dynamics in superconducting microwave resonators made of thin-film granular aluminum. Phys. Rev. Lett. 121, 117001 (2018).

    ADS  Google Scholar 

  • 19.

    Cardani, L. et al. Reducing the impact of radioactivity on quantum circuits in a deep-underground facility. Preprint at https://arXiv.org/abs/2005.02286 (2020).

  • 20.

    Day, P. K., LeDuc, H. G., Mazin, B. A., Vayonakis, A. & Zmuidzinas, J. A broadband superconducting detector suitable for use in large arrays. Nature 425, 817–821 (2003).

    ADS  CAS  Google Scholar 

  • 21.

    Irwin, K. D., Hilton, G. C., Wollman, D. A. & Martinis, J. M. X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback. Appl. Phys. Lett. 69, 1945–1947 (1996).

    ADS  CAS  Google Scholar 

  • 22.

    Moore, D. C. et al. Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors. Appl. Phys. Lett. 100, 232601 (2012).

  • 23.

    Albrecht, S. et al. Transport signatures of quasiparticle poisoning in a Majorana island. Phys. Rev. Lett. 118, 137701 (2017).

    ADS  CAS  Google Scholar 

  • 24.

    Koch, J. et al. Charge insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS  Google Scholar 

  • 25.

    Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    ADS  Google Scholar 

  • 26.

    Klimov, P. et al. Fluctuations of energy-relaxation times in superconducting qubits. Phys. Rev. Lett. 121, 090502 (2018).

    ADS  CAS  Google Scholar 

  • 27.

    Wang, C. et al. Measurement and control of quasiparticle dynamics in a superconducting qubit. Nat. Commun. 5, 5836 (2014).

    ADS  CAS  Google Scholar 

  • 28.

    Kozorezov, A. et al. Quasiparticle-phonon downconversion in nonequilibrium superconductors. Phys. Rev. B 61, 11807 (2000).

    ADS  CAS  Google Scholar 

  • 29.

    Kozorezov, A., Wigmore, J., Martin, D., Verhoeve, P. & Peacock, A. Electron energy down-conversion in thin superconducting films. Phys. Rev. B 75, 094513 (2007).

    ADS  Google Scholar 

  • 30.

    Allison, J. et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006).

    ADS  Google Scholar 

  • 31.

    Agostinelli, S. et al. Geant4—a simulation toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2003).

    ADS  CAS  Google Scholar 

  • 32.

    Dicke, R. The measurement of thermal radiation at microwave frequencies. Rev. Sci. Instrum. 17, 268–275 (1946).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Aguilar-Arevalo, A. et al. Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB. Phys. Rev. D 94, 082006 (2016).

    ADS  Google Scholar 

  • 34.

    Agnese, R. et al. Projected sensitivity of the SuperCDMS SNOLAB experiment. Phys. Rev. D 95, 082002 (2017).

    ADS  Google Scholar 

  • 35.

    Alduino, C. et al. First results from CUORE: a search for lepton number violation via 0νββ decay of 130Te. Phys. Rev. Lett. 120, 132501 (2018).

    ADS  CAS  Google Scholar 

  • 36.

    Agostini, M. et al. Improved limit on neutrinoless double decay of 76Ge from GERDA phase II. Phys. Rev. Lett. 120, 132503 (2018).

    ADS  CAS  Google Scholar 

  • 37.

    Gando, A. et al. Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys. Rev. Lett. 117, 082503 (2016).

    ADS  CAS  Google Scholar 

  • 38.

    Aalseth, C. E. et al. Search for neutrinoless double decay in 76Ge with the Majorana demonstrator. Phys. Rev. Lett. 120, 132502 (2018).

    ADS  CAS  Google Scholar 

  • 39.

    Albert, J. B. et al. Search for neutrinoless double-beta decay with the upgraded EXO-200 detector. Phys. Rev. Lett. 120, 072701 (2018).

    ADS  CAS  Google Scholar 

  • 40.

    Gustavsson, S. et al. Suppressing relaxation in superconducting qubits by quasiparticle pumping. Science 354, 1573–1577 (2016).

    ADS  CAS  Google Scholar 

  • 41.

    Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).

    ADS  CAS  Google Scholar 

  • 42.

    Macklin, C. et al. A near–quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    ADS  CAS  Google Scholar 

  • 43.

    Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Tanabashi, M. et al. Review of particle physics. Phys. Rev. D 98, 030001 (2018).

    ADS  Google Scholar 

  • 45.

    Hagmann, C., Lange, D. & Wright, D. Cosmic-ray shower generator (CRY) for Monte Carlo transport codes. IEEE Nucl. Sci. Symp. Conf. Rec. 2, 1143–1146 (2007).

    Google Scholar 

  • 46.

    Mangiafico, S. S. Summary and analysis of extension program evaluation in R (Rutgers Cooperative Extension, 2016).

  • Let's block ads! (Why?)



    "impact" - Google News
    August 26, 2020 at 10:02PM
    https://ift.tt/2FUxPB7

    Impact of ionizing radiation on superconducting qubit coherence - Nature.com
    "impact" - Google News
    https://ift.tt/2RIFll8
    https://ift.tt/3fk35XJ

    Bagikan Berita Ini

    0 Response to "Impact of ionizing radiation on superconducting qubit coherence - Nature.com"

    Post a Comment

    Powered by Blogger.